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ABSTRACT

Group decision making using multi-criteria decision methods (MCDM) is a common way
to support rational decision making in various fields of applications. The input of individ-
ual group members have to be aggregated resulting in a consolidated outcome. The au-
thor introduces a consensus indicator as a measure of agreement among decision makers
using Shannon entropy. Based on the concept of diversity in ecology, the partitioning of
Shannon entropy into alpha and beta components is used to develop a simple cluster algo-
rithm to identify possible subgroups of decision makers with higher consensus. This al -
lows a deeper insight  into the decision making and the group results.  The process is
demonstrated with two typical examples using group data as derived from the analytic hi-
erarchy process (AHP). The algorithm is implemented and published in PHP and avail-
able as open source.
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1 Introduction

Multi-criteria  decision  making  (MCDM)  methods  are  widely  applied  to  support  the
process of rational decision making; often these methods are also used to collect inputs of
a group of decision makers (DM) and consolidate their judgments for group decision
making  (Alfurhood &Silaghi1,2018;  Kabak & Ervural,  2017;  Zadnik-Stirn  & Grošelj,
2010). Several group aggregation techniques are available (Abel et al., 2015; Grošelj  et
al., 2015; Wan, M. L. & Wan, A., 2017; Wu, Chiang & Lin, 2008). In the following we
assume to have a set of of criteria or categories ci with weights wik corresponding to pref-
erences of an individual DM k. In addition we use, without limitation of general validity
for our further considerations, the simple technique of aggregation of individual priorities
(AIP) by means of the arithmetic mean (Formana & Peniwati, 1998; Carmo et al., 2013).

Although mathematically it is always possible to calculate an aggregated group result, it
does not make sense in all cases. Consider the following simple example: We have two
DM with totally opposite judgments for two criteria; the aggregation will result in equal
weights (50/50) for both criteria. In fact, there is no agreement between the two decision
makers, and equal weights may result in a deadlock situation.

Therefore, it is necessary to analyse the group outcome and find a measure of consensus
(agreement) for the aggregated group result  (Bennani  et al.,  2014; Dong  et al.,  2010;
Goepel, 2013).
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We interpret our set of categories ci with weights wik as a weight distribution for the indi-
vidual DM k, and we need to find its (dis)similarity with the weight distribution wil over
the same set of categories of another DM l. A suitable measure of differences or similari-
ties between distributions is relative homogeneity, based on the mathematical concept of
diversity as used in ecology and biology. Instead of species distributions (relative abun-
dance of species) in different habitats, we analyse the relative weight distribution of crite-
ria among different decision makers.

2 Methodology

Originating from information theory, the concept of Shannon entropy is well established
in biology for the measurement of biodiversity (Morris et al., 2014). We introduce Shan-
non entropy and its partitioning into two independent components, alpha and beta en-
tropy, to derive a consensus indicator for group decision making.

2.1 Shannon Entropy and Diversity
Shannon entropy H (Shannon, 1949) can be written as
 

H=∑
i=1

n

−w i ln (wi ) (1)

with wi relative weight of category i. ∑
i

n

wi=1 (2)

For categories with wi = 0 the contribution to H is zero. Practically H can be interpreted
as a measure of the evenness of priorities among the criteria for an individual DM; the
higher priorities are concentrated on fewer criteria, the lower the entropy. Using the ex-
ponential function we get 1D, the Hill number of order one (Hill, 1973).

D1 =exp (H ) (3)

In Ecology 1D is interpreted as the effective number of species (Jost, 2006); in our con-
text it can be interpreted as the effective number of criteria. For an equal distribution of
priorities across all criteria, 1D equals the number of criteria n, and the Shannon entropy
H equals ln(n). For priority given to only one single criterion, diversity 1D is unity, and
Shannon entropy H equals ln(1) = 0. Roughly, 1D measures the number of ‘common’ (or
‘typical’) criteria in a group (Chao et al., 2017).

It is important to note that Shannon entropy, as defined in equations (1) and (2), cannot
be used as a measure of consensus, because any permutation of a given weight distribu-
tion over categories will have the same entropy value associated with it. Entropy is con-
stant regardless of the order of the categories within the distribution. This is exactly in
opposition  to  the  requirements  essential  to  a  consensus  measure  (Tastle & Wierman,
2007). We need to partition Shannon entropy into its independent two components.

2.2 Partitioning  Shannon  Entropy  in  Alpha  and  Beta
Components

Whittaker (1972) described three terms for measuring biodiversity over spatial scales: al-
pha, beta, and gamma diversity. Alpha diversity is the diversity within a particular area or
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ecosystem; beta diversity is a comparison of diversity between ecosystems and gamma
diversity is a measure of the overall diversity within a large region. Using the concept of
diversity allows us to partition Shannon entropy into two independent components: alpha
and beta diversity (Jost, 2007).

H β=H γ−Hα (4)

Shannon γ entropy is H γ=∑
i=1

n

−wi , avg ln (w i ,avg ) (5)

with w i ,avg=
1
k
∑
j=1

k

w ij (6)

for participants j = 1 ... k and categories i = 1 ... n.

Shannon alpha entropy for a group of k decision makers is the average Shannon entropy
of all individual DM.

Shannon α entropy H α=
1
k
∑
j=1

k

∑
i=1

n

−wij ln (wij ) (7)

for participants j = 1 ... k and categories i = 1 ... n.

We introduce alpha diversity Dα=exp (H α ) (8)

and from eq. (3) and eq. (4) we write beta diversity as

D β=D γ/Dα . (9)

A high beta diversity shows a low similarity of the priorities among group members. 

2.3 Relative  Homogeneity,  Similarity  and  Group  Con-
sensus

The  reciprocal  of  beta  diversity  in  equation (9)  is  a  simple  homogeneity  measure
(MacArthur, 1965).

M=
1
Dβ

=
Dα

Dγ
(10)

It can be transformed into a relative index of homogeneity in the range from zero to unity
with

S=
1/Dβ−1/n

1−1/n
(11)

using the fact that Dα ,min=1 and Dγ ,max=n.

When using the analytic hierarchy process (AHP) (Saaty, 2008), the minimum alpha en-
tropy  Hα,min and maximum gamma entropy  Hγ,max  are  functions of the maximum scale
value m (m = 9 for the fundamental AHP scale),  the number of criteria n  (Goepel, 2018).
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H α ,min=−( m
n+m−1 ) ln(

m
n+m−1 )−( n−1

n+m−1 ) ln(
1

n+m−1 ) (12)

H γ ,max= ln (n ), (13)

With c=
exp (H α ,min)

n
(14)

we get instead of eq. (11) SAHP=
1/Dβ−c

1−c
(15)

The relative index of homogeneity S (resp. SAHP) is used as our consensus indicator;  it is
zero, when the priorities of all DM are completely distinct, and unity when the priorities
of all DM are identical.

We now can use our simple example of two decision makers with opposite judgment,
given in the introduction, to calculate the consensus. We have two criteria c1 and c2; DM1

gives the preference of  w11 = 100 % to  c1 and  w21 = 0 % to  c2. for DM2 w12 = 0 % and
w22 = 100 % (opposite judgment). The average weight  wi,avg in eq. (6) is wi,avg = 0.5, as a
group result  both criteria  get  the same weight  of  50%. Gamma entropy in eq.  (5)  is
Hγ =-ln(1/2) = 0.6932, or gamma diversity Dγ = 2. Shannon alpha entropy is according to
eq. (7) the average of the individual entropies. For both DM Hα,j = -ln (1) = 0, and there-
fore alpha diversity  Dα = exp(0) = 1. Beta entropy eq. (4) is  Hβ =Hγ - Hα = 0.6932, and
beta diversity  Dβ =  Dγ/Dα = 2. In this simple numerical example relative homogeneity
S in eq. (11) calculates to (0.5 – 0.5)/(1 – 0.5) = 0; there is no consensus.

2.4 The Similarity Matrix
We calculate the consensus indicator Sij for all possible pair combinations of DM i and j
and arrange them in a k by k matrix M.

M =

1 S01 … S0k
S10 ⋱ ⋯ ⋯
⋯ ⋯ ⋱ S2k
Sk 0 ⋯ ⋯ 1

(17)

The diagonal of the matrix is always one, as the consensus between same decision mak-
ers is 100% and Sij = Sji. In order to identify clusters of higher consensus between sub-
groups of DM we will rearrange the matrix columns and rows in a way that clusters of
high consensus form rectangles along the diagonal using the cluster algorithm.

2.5 Cluster Algorithm
In a first step of the algorithm we define an arbitrary threshold  th (e.g. th = 95%) and
count the number of elements in each row of the similarity matrix M exceeding the given
threshold. The row with the highest count determines the first cluster. If the count is zero
for all rows, we lower the threshold by a given step size (e.g. 2.5%) and repeat the count-
ing.
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Once we have found the first cluster, we delete all elements of the matrix ( i.e. set them to
zero) containing DM of the first cluster CL1. In addition we calculate the group consensus
SCL1 of the whole cluster using eq. (5), (7) and (11) for the DM in the cluster. We then re -
peat the counting for the next possible cluster CL2, until none of the remaining rows con-
tains elements exceeding the given threshold. Decision makers belonging to these re-
maining matrix elements are put into a list of ‘unclustered’ (dissociated) DM.

We continue with the next threshold value to scan a whole range of thresholds between
thmax and thmin. This way we generate a threshold table, showing the number of clusters mcl

and number of dissociated participants muc as a function of the threshold th.

In a second step the algorithm will then select, based on the generated threshold table, the
optimal clustering.  The most  simple optimization function is  to find the minimum of
mcl + muc with the condition mcl > 1 (more than one clusters) and muc < 3 (one or two dis-
sociated DM). In addition, the consensus of the first cluster found, SCL1 is compared with
the consensus of the whole group S and a minimum defined threshold Smin. The reason is
that the clusters should have a higher consensus than the whole group, and there should
be a minimum consensus within the cluster. Therefore, only when SCL1 > S and SCL1 > Smin,
the threshold is proposed for clustering. Depending on the actual group data and bound-
ary conditions there is the possibility that no clusters are found, e.g. when mcl = 0 for the
whole threshold range, or no improvement of SCL1 > S can be achieved.

When a solution is found, rows and columns of the similarity matrix M are rearranged ac-
cording to the clusters found, elements are colour coded, and the matrix is displayed to
the user.

3 Implementation

The cluster algorithm was implemented in PHP (7.3.33), a server side scripting language
(PHP, 2022). The algorithm is coded as an object class and has four essential functions:

 cluster(th)is the main cluster algorithm: it searches for all clusters with the
given threshold value th and returns a list of clusters and a list of dissociated DM.

 calcThreshold() calculates the threshold table; it returns a table with the
number of clusters, the number of dissociated DM and the consensus for each
threshold in the range from thmin to thmax.

 findThreshold() searches for the optimal threshold value to be used for fi-
nal clustering.

 calcGroupSim(cluster) calculates  alpha,  beta  and  gamma  entropy,  as
well as the relative homogeneity S or the consensus indicator SAHP.

Project data can be imported as Java script object notation (JSON) or coma separated
value (CSV) text files. Once data are uploaded, the algorithm will run and output the data
input parameter, the threshold table, the consensus threshold determined for clustering,
and for each cluster the members (DM) and a diagram of the averaged weights over cate -
gories. Finally, for visualization, the similarity matrix is displayed.
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For the calculation of the threshold table, the threshold is varied from 97.5 % to 70 % in
steps of 2.5 %. Smin is set to the middle of the moderate range (68.75 %). In addition to the
conditions described under 2.5, we also allow one or two clusters and one or two dissoci-
ated DM capture ‘outliners’.

3.1 Consensus Word Scale
To make the results easier to interpret, we define a descriptive word scale for the consen-
sus range from zero to unity. For this we analyzed the consensus within 140 hierarchy
nodes (a set of criteria or sub-criteria within a decision hierarchy) of 35 AHP group deci-
sion projects. It could be shown that the consensus SAHP is normal distributed with a mean
value of 64 % ± 3 %. With a 99.5% probability the consensus of all projects lies between
28 % and 99 %. Therefore we divided the range of the scale in four equal segments from
50 % to 100 % (going from ‘low’ to ‘very high’), and defined the consensus for values
below 50 % as ‘very low’.

Table 1 Qualitative wording scale for AHP consensus indicator
Consensus

SAHP  
0% -

 50.0%
50% -
62.5%

62.5% -
75%

75% -
87.5%

87.5% -
100%

Word Scale Very low low moderate high Very high

Switching from the consensus indicator  SAHP to  the  relative  homogeneity  S shifts  the
mean value from 64 % to 70 %, which can be explained by the fact that in AHP we have
a limited 1 to 9 scale and Hα,min is a function of the maximum scale value (eq. (12)). As
we only make a relative comparison of  SCL > Smin and SCL > S, the actual limits between
the percentages for the word scale have no impact on the results.

4 Results and Discussion

After implementation the algorithm was tested with 21 AHP projects on 57 hierarchy
nodes, where a group of decision makers (participants) had evaluated criteria using pair -
wise comparisons. We are not going into the specific details of the projects, as we just
want to demonstrate the clustering, and how it can give a better insight into the aggre-
gated group results. The group size varied from seven to 122 participants with the num-
ber of criteria between two and nine for hierarchy nodes (using  SAHP) and 21 to 65 for
global priorities (using S).

Out of the 57 data samples the majority could be clustered in two or three clusters. For
five data sets more than three clusters were necessary and for eight samples clustering
was not possible. The consensus of the whole group before clustering varies from 37.2 %
to 82.5 %. Figure 1 shows the average consensus of clusters after clustering as a function
of the consensus of the whole group. Each data point is the averaged sum of projects in a
group consensus interval of 5 %. 

Especially for projects with a low or very low consensus there is a significant improve-
ment of the consensus within clusters, which indicates that the group result does not re-
flect the distinct judgments of group members within the subgroups.  In the following we
give two typical examples.
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Figure 1 Improvement of consensus indicator SAHP after clustering

4.1 Example 1
In the first example we look at a project node with three criteria judged by 13 partici-
pants. Priorities of the whole group is displayed in figure 2. The consolidated group result
shows over 50 % weight for criterion-1, approx. 30 % for criterion-2 and 20 % for crite-
rion-3. The group consensus is with 47 % very low.

Figure 2 Priorities of the whole group for example 1
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The threshold table (table 2) shows the number of possible clusters and the number of
dissociated participants as a function of the threshold value. The number of clusters is
one or two, the number of dissociated participants increases at higher threshold values.

Table 2 Threshold table of example 1
th .975 .95 .925 .9 .875 .85 .825 .8 .775 .75 .725 .7
Clusters 2 2 2 2 2 2 2 2 2 2 1 1
Unclust. 6 4 2 1 1 0 0 0 0 0 2 1

Under the boundary conditions given before, the algorithm determines an optimal thresh-
old value of 0.85, resulting in two clusters.

The first cluster consists of eight participants (1, 2, 4, 5, 9, 10, 11, and 13); the second
cluster of five participants (3, 6, 7, 8, and 12). The consensus of cluster one is increased
from 47 % (very low) to 90.1 % (very high), for cluster two from 47 % to 78.3 % (high).
The clusters can also clearly be recognized as rectangles along the diagonal in the simi -
larity matrix (fig. 3).

Figure 3 Clustered similarity matrix for the 13 participants in example 1

The averaged priorities of each cluster are shown figure 4 and 5. We see that members of
cluster one put their emphasis on criterion-1 with a weightage of 73 % (Fig. 4), whereas
members of cluster two put their main emphasis on criterion-2 and -3 (62 % resp. 26 %,
Fig. 5). It is a “split” decision with the majority of eight out of 13 (62 %) participants
ranking criterion-1 first, and four out of 13 (31 %) ranking criterion-2 first.
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Figure 4 New priorities for the first cluster in example 1

Figure 5 New priorities for the second cluster in example 1

4.2 Example 2
In our second example we look at four criteria evaluated by a small group of seven partic-
ipants. The group consensus of the whole group is with 40.4 % very low. Figure 6 shows
the similarity matrix before clustering.
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Figure 6 Similarity matrix of example 2 before clustering

The threshold table (table 3) shows two clusters up to a threshold of 0.95 with the mini-
mum of mcl + muc at 0.85.

Table 3 Threshold table of example 2
th .975 .95 .925 .9 .875 .85 .825 .8 .775 .75 .725 .7
Clusters 1 2 2 2 2 2 2 2 2 2 2 2
Unclust. 5 2 1 1 1 0 0 0 0 0 0 0

Figure 7 shows the corresponding similarity matrix M for th = 0.85. We can see the two
clusters along the diagonal. The first cluster contains four participants (1, 3, 5, and 6), the
group consensus is significantly increased from 40.4 % (very low) to 83.4 % (high). The
second cluster contains three participants (2, 4, and 7) with a group consensus of 91.8 %
(very high). We now know that we have two subgroups with distinct preferences in this
example.

Figure 7 Similarity matrix of example 2 after clustering

Looking at the averaged priorities for the two clusters (Fig. 8 and 9), we also recognize
the different  weight distribution.  Cluster one emphasizes criterion-1 with 62 %, while
cluster two emphasizes criterion-2 and 4 with 52 % resp. 33 %.
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Figure 8 Weight distribution for the first cluster in example 2

Figure 9 Weight distribution for the second cluster in example 2

Again, the group is split into four, respective three members with significant different
preferences on a set of four criteria.

5 Limitations

The actual implementation of the algorithm uses the arithmetic mean as aggregation func-
tion of weights, and group consensus of clusters is calculated based on AIP. This could
be easily changed, for example, using individual judgments for the similarity matrix and
the geometric mean as an aggregation function of individual judgments (AIJ) (Ossadnik
et al., 2015) for clustering.

The algorithm was developed with the intention to run online and allow users to get a
quick insight into their group decision projects. Therefore, we looked at a simple and fast
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solution for clustering. The proposed clustering might not always be the optimal solution,
there  is  still  room to  experiment  with  different  boundary  conditions  to  optimize  the
process. On the other hand, we have provided a manual input for the threshold values,
and display the output of the similarity matrix for visualization, therefore users have the
possibility to deviate from the proposed clustering and adapt the final clustering to their
projects. 

The similarity matrix can be displayed up to a size of 40 by 40 as full matrix showing ele-
ments values, and up to 150 by 150 showing colour coded elements without actual val-
ues. The program was tested to run with group sizes of approximately 800 participants,
execution time will  increase for  larger  sample sizes  and an online execution will  no
longer be optimal.

6 Conclusion

Multi-criteria decision making support tools are helpful when making group decisions.
While mathematically individual inputs always can be aggregated to yield a group result,
it is important to analyse the outcome using a consensus indicator as a measure of agree-
ment among group members. The author introduced a consensus indicator derived from
Shannon entropy, which can be partitioned into two independent alpha and beta compo-
nents. The partitioning allows to compare the similarity of priority distributions over cat-
egories between all pairs of group members and arrange them in a similarity matrix. A
simple clustering algorithm was developed to identify potential smaller subgroups with
higher consensus within the whole group. Using randomly selected samples of data re-
sulting from AHP projects with group sizes ranging from small (101) to large (102) it was
shown that for many of the projects the group could be divided into two or three smaller
subgroups with a significant higher consensus and dissimilar judgments on specific crite-
ria. This provides a good insight into the group results and could be used, for example, to
initiate a further meeting between the subgroups to discuss the results and find a suitable
compromise.

The cluster algorithm developed is actually not limited to group decision making; it is
general in its application. Beta diversity as a measure of variation (similarity and overlap)
between different samples of data distributions can also be used in the field of business
analysis. The author used it, for example, to analyse similarity of markets, product and
market diversification and to track the success of derived business actions.
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