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Abstract

Group  decision  making  using  multi-criteria  decision  methods  (MCDM)  is  a  common  way  to
support rational decision making in various fields of applications. The input of individual group
members  have  to  be  aggregated  resulting  in  a  consolidated  outcome.  The  author  introduces  a
consensus indicator as a measure of agreement among decision makers using Shannon entropy.
Based on the concept of diversity in ecology, the partitioning of Shannon entropy into alpha and
beta components is used to develop a simple cluster algorithm to identify possible subgroups of
decision makers with higher consensus. This allows a deeper insight into the decision making and
the group results.  The process  is  demonstrated with two typical  examples  using  group data  as
derived from the analytic hierarchy process (AHP). The algorithm is implemented and published in
PHP and available as open source.
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1. Introduction

Multi-criteria  decision  making (MCDM) methods  are  widely  applied  to  support  the  process  of
rational decision making; often these methods are also used to collect inputs of a group of decision
makers  (DM)  and  consolidate  their  judgments  for  group  decision  making.1–3  Several  group
aggregation techniques are available.4–7 In the following we assume to have a set of of criteria or
categories ci  with weights wik corresponding to preferences of an individual DM k. In addition we
use, without limitation of general validity for our further considerations, the simple technique of
aggregation of individual priorities (AIP) by means of the arithmetic mean.8,9

Although mathematically it is always possible to calculate an aggregated group result, it does not
make sense in all cases. Consider the following simple example: We have two DM with totally
opposite judgments for two criteria; the aggregation will result in equal weights (50/50) for both
criteria. In fact, there is no agreement between the two decision makers, and equal weights may
result in a deadlock situation.

Therefore,  it  is  necessary  to  analyse  the  group  outcome  and  find  a  measure  of  consensus
(agreement) for the aggregated group result.10–12
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We interpret our set of categories ci with weights wik as a weight distribution for the individual DM
k,  and  we need to  find  its  (dis)similarity  with the  weight  distribution  wil over  the same set  of
categories of another DM l. A suitable measure of differences or similarities between distributions is
relative  homogeneity,  based  on  the  mathematical  concept  of  diversity  as  used  in  ecology  and
biology. Instead of species distributions (relative abundance of species) in different habitats, we
analyse the relative weight distribution of criteria among different decision makers.

2. Methodology

Originating from information theory, the concept of Shannon entropy is well established in biology
for the measurement of biodiversity.13 We introduce Shannon entropy and its partitioning into two
independent components, alpha and beta entropy, to derive a consensus indicator for group decision
making.

2.1 Shannon Entropy and Diversity

Shannon entropy H (Shannon, 1949) can be written as14 

H=∑
i=1

n

−wi ln ( wi ) (1)

with wi relative weight of category i ∑
i

n

wi=1. (2)

For categories with  wi  = 0 the contribution to  H is  zero.  Practically  H can be interpreted as a
measure of the evenness of priorities among the criteria for an individual DM; the higher priorities
are concentrated on fewer criteria, the lower the entropy. 

Using the exponential function we get 1D, the Hill number of order one.15

D1
=exp (H ) (3)

In Ecology 1D is interpreted as the effective number of species;16 in our context it can be interpreted
as the effective number of criteria.  For an equal  distribution of priorities across all  criteria,  1D
equals the number of criteria n, and the Shannon entropy H equals ln(n). For priority given to only
one single criterion, diversity  1D is unity, and Shannon entropy  H equals ln(1) = 0. Roughly,  1D
measures the number of ‘common’ (or ‘typical’) criteria in a group.17

It  is  important to note that Shannon entropy, as defined in  eq.(1) and  (2), cannot be used as a
measure of consensus, because any permutation of a given weight distribution over categories will
have the same entropy value associated with it. Entropy is constant regardless of the order of the
categories within the distribution. This is exactly in opposition to the requirements essential to a
consensus measure.18 We need to partition Shannon entropy into its independent two components.

Goepel, K. D. 2022 2 Group Consensus Cluster Analysis



2.2 Partitioning Shannon Entropy in Alpha and Beta 
Components

Whittaker described three terms for measuring biodiversity over spatial  scales:  alpha,  beta,  and
gamma diversity.19 Alpha  diversity  is  the  diversity  within  a  particular  area  or  ecosystem;  beta
diversity is a comparison of diversity between ecosystems and gamma diversity is a measure of the
overall diversity within a large region. Using the concept of diversity allows us to partition Shannon
entropy into two independent components, alpha- and beta diversity.20

Hβ=H γ−Hα (4)

Shannon γ entropy is Hγ=∑
i=1

n

−wi , avg ln(wi ,avg) (5)

with w i ,avg=
1
k
∑
j =1

k

w ij (6)

for participants j = 1 ... k and categories i = 1 ... n.

Shannon alpha entropy for a group of k decision makers is the average Shannon entropy of all 
individual DM.

Shannon α entropy H α=
1
k
∑
j=1

k

∑
i=1

n

−w ij ln ( wij) (7)

for participants j = 1 ... k and categories i = 1 ... n.

We introduce alpha diversity Dα=exp ( H α ) (8)

and from eq. (3) and eq. (4) we write beta diversity as

D β=D γ/ Dα (9)

A high beta diversity shows a low similarity of the priorities among group members. 

2.3 Relative Homogeneity, Similarity and Group Consensus

The reciprocal of beta diversity eq. (9) is a simple homogeneity measure.21

M=
1

Dβ

=
Dα

Dγ
(10)

It can be transformed into a relative index of homogeneity in the range from zero to unity with

S=
1/ Dβ−1/n

1−1 /n
(11)

using the fact that Dα ,min=1 and Dγ ,max=n.

When  using  the  analytic  hierarchy  process  (AHP),22 the  minimum  alpha  entropy  Hα,min and
maximum  gamma  entropy  Hγ,max  are functions of  the  maximum  scale  value  m (m = 9  for  the
fundamental AHP scale) and the number of criteria n.23
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H α ,min=−( m
n+m−1 ) ln ( m

n+m−1 )−( n−1
n+m−1 ) ln( 1

n+m−1 ) (12)

and H γ, max=ln(n) (13)

With c=
exp (H α ,min)

n
(14)

we get instead of eq. (11) SAHP=
1/ Dβ−c

1−c
. (15)

The relative index of homogeneity S (resp. SAHP) is used as our consensus indicator; it is zero, when
the  priorities  of  all  DM are  completely  distinct,  and  unity  when  the  priorities  of  all  DM are
identical.12,23

We now can use our simple example of two decision makers with opposite judgment, given in the
introduction, to calculate the consensus. We have two criteria c1 and c2; DM1 gives the preference of
w11 = 100 % to c1 and w21 = 0 % to c2. for DM2 w12 = 0 % and w22 = 100 % (opposite judgment). The
average weight wi,avg in eq. (6) is wi,avg = 0.5, as a group result both criteria get the same weight of
50%. Gamma entropy in eq.(5) is Hγ =-ln(1/2) = 0.6932, or gamma diversity Dγ = 2. Shannon alpha
entropy  is  according  to  eq.(7)  the  average  of  the  individual  entropies.  For  both  DM

Hα,j = -ln (1) = 0,  and  therefore  alpha  diversity  Dα = exp(0) = 1.  Beta  entropy  eq. (4)  is

Hβ =Hγ - Hα = 0.6932, and beta diversity Dβ =  Dγ/Dα = 2. In this simple numerical example relative

homogeneity S in eq.(11) calculates to (0.5 – 0.5)/(1 – 0.5) = 0; there is no consensus.

2.4 The Similarity Matrix

We calculate the consensus indicator Sij for all possible pair combinations of DM i and j and arrange
them in a k by k matrix M. 

MS =

1 S01 … S0k

S10 ⋱ ⋯ ⋯
⋯ ⋯ ⋱ S2k

Sk 0 ⋯ ⋯ 1

(17)

The diagonal of the matrix is always one, as the consensus between same decision makers is 100%
and  Sij =  Sji. In order to identify clusters of higher consensus between subgroups of DM we will
rearrange the matrix columns and rows in a way that clusters of high consensus form rectangles
along the diagonal using the cluster algorithm.

2.5 Cluster algorithm

In a first step of the algorithm we define an arbitrary threshold  th (e.g. th = 95%) and count the
number of elements in each row of the similarity matrix M exceeding the given threshold. The row
with the highest count determines the first cluster. If the count is zero for all rows, we lower the
threshold by a given step size (e.g. 2.5%) and repeat the counting.

Once we have found the first cluster, we delete all elements of the matrix (i.e.  set them to zero)
containing DM of the first cluster CL1. In addition we calculate the group consensus  SCL1  of the
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whole cluster using eq. (5, 7) and (11) for the DM in the cluster. We then repeat the counting for the
next possible cluster CL2, until none of the remaining rows contains elements exceeding the given
threshold.  Decision makers belonging to  these remaining matrix elements are put into a list  of
‘unclustered’ (dissociated) DMs.

We continue with the next threshold value to scan a whole range of thresholds between thmax and
thmin. This way we generate a threshold table, showing the number of clusters  mcl and number of
dissociated participants muc as a function of the threshold th.

In a second step the algorithm will then select, based on the generated threshold table, the optimal
clustering.  The most simple optimization function is  to find the minimum of  mcl + muc with the
condition mcl > 1 (more than one clusters) and muc < 3 (one or two dissociated DM). In addition, the
consensus of the first cluster found, SCL1 is compared with the consensus of the whole group S and a
minimum defined threshold Smin. The reason is that the clusters should have a higher consensus than
the whole group, and there should be a minimum consensus within the cluster. Therefore,  only
when  SCL1 > S and  SCL1 > Smin,  the threshold is  proposed for clustering.  Depending on the actual
group data and boundary conditions there is the possibility that no clusters are found,  e.g.  when
mcl = 0 for the whole threshold range, or no improvement of SCL1 > S can be achieved.

When a solution is found, rows and columns of the similarity matrix M are rearranged according to
the clusters found, elements are colour coded, and the matrix is displayed to the user.

3. Implementation

The cluster algorithm was implemented in PHP (7.3.33), a server side scripting language.24 The
algorithm is coded as an object class and has four essential functions:

• cluster(th)is  the  main cluster  algorithm:  it  searches for  all  clusters  with  the  given

threshold value th and returns a list of clusters and a list of dissociated DM.

• calcThreshold() calculates the threshold table;  it  returns a table with  the  number of

clusters,  the  number of dissociated DM and the  consensus for each threshold in the range
from thmin to thmax.

• findThreshold() searches for  the  optimal  threshold  value  to  be  used  for  final

clustering.

• calcGroupSim(cluster) calculates  alpha,  beta and gamma entropy, as well  as  the

relative homogeneity S or the consensus indicator SAHP.

Project data can be imported as Java script object notation (JSON) or coma separated value (CSV)
text files. Once data are uploaded, the algorithm will run and output the data input parameter, the
threshold table, the consensus threshold determined for clustering, and for each cluster the members
(DM)  and  a  diagram  of  the  averaged  weights  over  categories.  Finally,  for  visualization,  the
similarity matrix is displayed.

For the calculation of the threshold table, the threshold is varied from 97.5 % to 70 % in steps of
2.5 %.  Smin is  set  to  the middle of  the moderate  range (68.75 %).  In  addition to the conditions
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described under 2.5, we also allow one or two clusters and one or two dissociated DM  capture
‘outliners’.

3.1 Consensus word scale

To make the results easier to interpret, we define a descriptive word scale for the consensus range
from zero to unity. For this we analyzed the consensus within 140 hierarchy nodes (a set of criteria
or sub-criteria within a decision hierarchy) of 35 AHP group decision projects. It could be shown
that  the consensus  SAHP is  normal  distributed with a  mean value of  64 % ± 3 %. With a  99.5%
probability the consensus of all projects lies between 28 % and 99 %. Therefore we divided the
range of the scale in four equal segments from 50 % to 100 % (going from ‘low’ to ‘very high’),
and defined the consensus for values below 50 % as ‘very low’.

Table 1: Qualitative wording scale for AHP consensus indicator

Consensus SAHP   0% ... 50% 50% ... 62.5% 62.5% ... 75% 75% ... 87.5% 87.5% ... 100%
Wording scale  Very low low moderate high Very high

Switching from the consensus indicator  SAHP to the relative homogeneity  S shifts the mean value
from 64 % to 70 %, which can be explained by the fact that in AHP we have a limited 1 to 9 scale
and  Hα,min is  a  function  of  the  maximum  scale  value  (eq(12)).  As  we  only  make  a  relative
comparison of  SCL > Smin and SCL > S, the actual limits between the percentages for the word scale
have no impact on the results.

4. Results and Discussion

After implementation the algorithm was tested with 21 AHP projects on 57 hierarchy nodes, where
a group of decision makers (participants) had evaluated criteria using pairwise comparisons. We are
not going into the specific details of the projects, as we just want to demonstrate the clustering, and
how it can give a better insight into the aggregated group results. The group size varied from seven
to 122 participants with the number of criteria between two and nine for hierarchy nodes (using
SAHP) and 21 to 65 for global priorities (using S).

Out of the 57 data samples the majority could be clustered in two or three clusters. For five data sets
more than three clusters were necessary  and for eight samples clustering was not possible. The
consensus of the whole group before clustering varies from 37.2 % to 82.5 %. Figure 1 shows the
average consensus of clusters after clustering as a function of the consensus of the whole group.
Each data point is a averaged sum of projects in a group consensus intervall of 5 %. 

Especially for projects with a low or very low consensus there is a siginificant improvement of the
consensus  within  clusters,  which  indicates  that  the  group  result  does  not  reflect  the  distinct
judgments of group members within the subgroups.  In the following we give two typical examples.
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Figure 1. Improvement of consensus indicator SAHP after clustering

Example 1

In the first example we look at a project node with three criteria judged by 13 participants. Priorities
of the whole group is displayed in figure 2. The consolidated group result shows over 50 % weight
for criterion-1, approx. 30 % for criterion-2 and 20 % for criterion-3. The group consensus is with
47 % very low.

Figure 2. Priorities of the whole group for example 1.

The threshold table (table 2) shows the number of possible clusters and the number of dissociated
participants as a function of the threshold value. The number of clusters is one or two, the number
of dissociated participants increases at higher threshold values.
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Table 2: Threshold table of example 1

Threshold 0.975 0.95 0.925 0.9 0.875 0.85 0.825 0.8 0.775 0.75 0.725 0.7
Clusters 2 2 2 2 2 2 2 2 2 2 1 1

Dissociated 6 4 2 1 1 0 0 0 0 0 2 1

Under the boundary conditions given before, the algorithm determines an optimal threshold value of
0.85, resulting in two clusters.

The first cluster consists of eight participants (1, 2, 4, 5, 9, 10, 11, and 13); the second cluster of five
participants (3, 6, 7, 8, and 12). The consensus of cluster one is increased from 47 % (very low) to
90.1 % (very high), for cluster two from 47 % to  78.3 % (high). The clusters can also clearly be
recognized as rectangles along the diagonal in the similarity matrix (Fig. 3).

Figure 3. Clustered similarity matrix for the 13 participants in example 1.

The averaged priorities of each cluster are shown figure 4 and 5.  We see that members of cluster
one put  their  emphasis  on criterion-1 with  a  weightage  of  73 % (Fig. 4),  whereas  members  of
cluster two put their main emphasis on criterion-2 and -3 (62 % resp. 26 %, Fig. 5). It is a “split”
decision with the majority of eight out of 13 (62 %) participants ranking criterion-1 first, and four
out of 13 (31 %) ranking criterion-2 first.
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Figure 4. New priorities for the first cluster in example 1.

Figure 5: New priorities for the second cluster in example 1.

Example 2

In our second example we look at four criteria evaluated by a small group of seven participants. The
group consensus of the whole group is with 40.4 % very low. Figure 6 shows the similarity matrix
before clustering.
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Figure 6: Similarity matrix of example 2 before clustering.

The threshold table (table 3) shows two clusters up to a threshold of 0.95 with the minimum of
mcl + muc at 0.85.

Table 3: Threshold table of example 2

Threshold 0.975 0.95 0.925 0.9 0.875 0.85 0.825 0.8 0.775 0.75 0.725 0.7
Clusters 1 2 2 2 2 2 2 2 2 2 2 2

Dissociated 5 2 1 1 1 0 0 0 0 0 0 0

Figure 7 shows the corresponding similarity matrix M for  th = 0.85. We can see the two clusters
along the diagonal. The first cluster contains four participants (1, 3, 5, and 6), the group consensus
is significantly increased from 40.4 % (very low) to 83.4 % (high). The second cluster contains
three participants (2, 4, and 7) with a group consensus of 91.8 % (very high). We now know that we
have two subgroups with distinct preferences in this example.

Figure 7: Similarity Matrix of the second example after clustering.

Looking at the averaged priorities for the two clusters (Fig. 8 and 9), we also recognize the different
weight distribution. Cluster one emphasizes criterion-1 with 62 %, while cluster two emphasizes
criterion-2 and 4 with 52 % resp. 33 %.
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Figure 8: Weight distribution for the first cluster in example 2.

Figure 9: Weight distribution for the second cluster in example 2.

Again, the group is split into four, respective three members with significant different preferences 
on a set of four criteria.

5. Limitations

The actual implementation of the algorithm uses the arithmetic mean as aggregation function of
weights, and group consensus of clusters is calculated based on AIP. This could be easily changed,
for example, using individual judgments for the similarity matrix and the geometric mean as an
aggregation function of individual judgments (AIJ)25 for clustering.

The algorithm was developed with the intention to run online and allow users to get a quick insight
into their group decision projects. Therefore, we looked at a simple and fast solution for clustering.
The proposed clustering might not always be the optimal solution, there is still room to experiment
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with different boundary conditions to optimize the process. On the other hand, we have provided a
manual  input  for  the  threshold  values,  and  display  the  output  of  the  similarity  matrix  for
visualization, therefore users have the possibility to deviate from the proposed clustering and adapt
the final clustering to their projects. 

The similarity matrix can be displayed up to a size of 40 by 40 as full matrix showing elements
values, and up to 150 by 150 showing colour coded elements without actual values. The program
was tested to run with group sizes of approximately 800 participants, execution time will increase
for larger sample sizes and an online execution will no longer be optimal.

6. Conclusion

Multi-criteria  decision  making  support  tools  are  helpful  when  making  group  decisions.  While
mathematically individual inputs always can be aggregated to yield a group result, it is important to
analyse the outcome using a consensus indicator as a measure of agreement among group members.
The  author  introduced  a  consensus  indicator  derived  from  Shannon  entropy,  which  can  be
partitioned into two independent alpha and beta components. The partitioning allows to compare the
similarity of priority distributions over categories between all pairs of group members and arrange
them in  a  similarity  matrix.  A simple  clustering  algorithm was  developed to  identify  potential
smaller subgroups with higher consensus within the whole group. Using randomly selected samples
of data resulting from AHP projects with group sizes ranging from small (101) to large (102) it was
shown that for many of the projects the group could be divided into two or three smaller subgroups
with a significant higher consensus and dissimilar judgments on specific criteria. This provides a
good insight into the group results and could be used, for example, to initiate a further meeting
between the subgroups to discuss the results and find a suitable compromise.

The cluster algorithm developed is actually not limited to group decision making; it is general in its
application.  Beta  diversity  as  a  measure  of  variation (similarity  and overlap)  between different
samples of data distributions can also be used in the field of business analysis. The author used it,
for example, to analyse similarity of markets, product and market diversification and to track the
success of derived business actions.

The algorithm was implemented as a new function in the free, web based AHP Online System,26 an
open source software tool for educational and research purposes. The author wants to thank all users
for their support and help with raw data on the platform for test and development.
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