Business Performance Management

Analytic Hierarchy Process

- Multi Criteria decision making method

- Originally developed by Prof. Thomas L. Saaty

Klaus Goepel, Mar. 2010

Analytic Hierarchy Process (AHP) Deriving ratio scales from paired comparisons.

Allows some small inconsistency in judgment.

For more visit http://bpmsg.com

Analytic Hierarchy Process

Step 1: Define Objective

Step 2: Structure elements in criteria, sub-criteria, alternatives etc.

Step 3: Make a pair wise comparison of elements in each group

Step 4: Calculate weighting and consistency ratio

Step 5: Evaluate alternatives according weighting

Get ranking

For more visit http://bpmsg.com

Analytic Hierarchy Process – Example

Structure elements in criteria, sub-criteria, alternatives etc.

Compare all elements **pair wise** with respect to the objective

Compare all elements pair wise with respect to the objective

Compare all elements **pair wise** with respect to the objective

Scale:

Intensity of importance	Definition	Explanation			
1	Equal importance	Two elements contribute equally to the objective			
3	Moderate importance	e Experience and judgment slightly favor one element over another			
5	Strong Importance	Experience and judgment strongly favor one element over another			
7	Very strong importance	One element is favored very strongly over another, it dominance is demonstrated in practice			
9	Extreme importance	The evidence favoring one element over another is of the highest possible order of affirmation			

Compare all elements pair wise with respect to the objective

$$\frac{n^2 - n}{2}$$
 n = 3 results in 3 comparisons

Arrange the result in a matrix

Arrange the result in a matrix

and compute the normalized principal Eigen vector of the matrix

Find the Eigen vevtor of the matrix

Matrix N for n (=3) criteria
$$\mathbf{N} = \begin{bmatrix} 1 & a_{12} & a_{13} \\ a_{12}^{-1} & 1 & a_{23} \\ a_{13}^{-1} & a_{23}^{-1} & 1 \end{bmatrix}$$

Sum of columns
$$S_{C1} \quad S_{C2} \quad S_{C3}$$

Excel Sheet ava be for for

Square normalized Matrix |**N**| and calculate next iteration of Eigen vector until difference $\mathbf{x}_{k+1} - \mathbf{x}_k$ is neglect able $\mathbf{x}_2 \rightarrow |\mathbf{N}|^2$

Find the Eigen vevtor of the matrix

Calculate largest Eigen value λ

$$\lambda = S_{\text{C1}} \cdot x_1 + S_{\text{C2}} \cdot x_2 + S_{\text{C3}} \cdot x_3$$

Random Index RI

n	1	2	3	4	5	6	7	8	9	10
RI	0,00	0,00	0,58	0,90	1,12	1,24	1,32	1,41	1,45	1,49

AHP **Result:** Gadget to buy 17% Memory 43% Delivery 40% Color Criteria: Weight: Rank: 3 Color 17% 1 Memory **43%**

For more visit <u>http://bpmsg.com</u>

40%

Delivery

2

Compare all elements **pair wise** with respect to the objective

Compare all elements pair wise with respect to the objective

Arrange the result in a matrix

and compute the normalized principal Eigen vector of the matrix

Result:

Weight sub-criteria according weights of main-criteria

Complete Result:

Evaluate alternatives

Evaluate alternatives

For more visit http://bpmsg.com

Evaluate alternatives

Evaluate alternatives

Evaluate alternatives

AHP – cost vs. benefit

Alternativ	/es	Benefit		Cost \$	Cost	(norm)
Model 1	Pink, 32 MB, immediate	39%		120		22%
Model 2	Blue, 16 MB, immediate	23%		120		22%
Model 3	Black, 32 MB, 1 week	40%		150		28%
Model 4	Red, 64 MB, 4 weeks	32%		150		28%
		_	540			

AHP – cost vs. benefit

Model 3 has similar benefits compared to **model 1**, but higher costs. Probably you would go for model 1 with immediate delivery and lower price

For more visit http://bpmsg.com

AHP – cost vs. benefit

Model 4 has significant higher benefits than **model 2**. Probably you would go for model 4 accepting longer delivery and higher price

Applications:

Evaluation of product features

Cost-Benefit Analysis

Strategy development

Selection of Key Performance Indicators

Weighting of objectives in MBOs

Decision making with multiple inputs from different stakeholders ...

